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Machine Learning (ML)

The field of machine learning studies the design of
computer programs (agents) capable of learning
from past experience or adapting to changes in the
environment.

Biomedical examples:

Diagnose and treat illness with structured EHR
data (CDS)

Cancer detection with images/scans
Pathology and radiology assistants

Predicting gene expressions

Drug design development

Drug repurposing
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Machine Learning (ML)

The field of machine learning studies the design of E;ag')‘!‘ggi;i
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Machine Learning
algorithm

Biomedical examples:
* Diagnose and treat illness with structured EHR l

data (CDS) < - Hypothesis
« Cancer detection with images/scans ol

« Pathology and radiology assistants
* Predicting gene expressions

e Drug design development

e Drug repurposing




Machine Learning (ML)

Patient 1

Training Data = Features of model Erainipg_ dfﬂi
(x,y); I=1:m
________Age ____|Gender _|Blood Pressure l

Patient 2

Machine Learning
algorithm

Patient characteristics such as —

 Demographics

’ Vllta|S - - Hypothesis
« Diagnoses h(x)

« Medical history
 Lab results
 Medication orders
* Family history

« CT scans

« Radiology reports




ML on graphs

Make predictions or discover new patterns using graph-structured data as feature information.

Graph structured data:

Adjacency matrix

Nodes: W, X, Y, Z (diseases, genes, molecules, enzymes ...)
Edges: relationships between the nodes (causes, interacts with, has gene, participates in ...)

Question: Can ontologies be represented as graphs?
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Homogenous vs heterogeneous graphs
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https://github.com/Knowledge-Graph-Hub/kg-covid-19
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SARS-CoV-2 interaction graph

https://cs.mcgill.ca/~wlh/comp766/files/graphs-against-covid.pdf

Why ML on graphs?

Make predictions or discover new patterns using graph-
structured data as feature information.

. predict the role of a person in a collaboration network
. recommend new friends to a user in a social network

. predict new therapeutic applications of existing drug
molecules (represented as graphs)

. Link prediction: find missing links in biological
interaction graphs

. Node classification: classify the role of a protein in a
biological interaction graph




Why ML on graphs?
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Network embedding
in biomedicine
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Figure 3. Illustration of applications of network embedding in biomedical data science.
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ML on graphs

Apply machine learning algorithms (logistic regression, naive Bayes, neural networks) with graph data.

What information do we want from the graph for machine learning?
» Position of node (local or global) in the graph
» Local neighborhood of a node (nodes+edges)
« Similarity between nodes (such as number of common edges)

Problems with encoding graphs:
» High dimensional representation (millions of nodes and edges)
 Statistical or kernel functions of graph data:

* Time-consuming

» Expensive (computation power)

* Hand picked structural information




Graph Representation Learning (GRL)

Learn representations that encode structural information about the graph

Previous work
» treated encoding as a pre-processing step
» using hand-engineered statistics to extract structural information.

GRL
 treat encoding as machine learning task itself
* using a data-driven approach to learn embeddings that encode graph structure

Goal: Downstream tasks such as
« Link prediction
« Graph completion
* Node classification




Embeddings on graphs

An embedding is a relatively low-dimensional space into which you can translate high-dimensional vectors.

Word embeddings (word2vec)

. . &
N-dimensional vectors &?éj\e e & & & N
Q& O N N AN S
\A\ ON N < O AQ’ N
A 4 < © ° ki houses
cat —»| 06 109 (0.1 |04 |-0.7]-0.3]|-0.2 &

Dimensionality
reduction of
word

kltten—) 0.5 08 |-0.110.2 |-0.6)1-0.5|-0.1 embeddings

from 7D to 2D
>

: " cat
dog —|0.7 |-0.1| 0.4 | 0.3 |-0.4|-0.1[-0.3 o.kitten

houses —|-0.8]|-0.4|-0.5| 0.1 |[-0.9] 0.3 | 0.8 &
dog

Node or graph or network embeddings

* Nodes that are in the same neighborhood in the original graph should be close in the embedding space
« “Local neighborhood” of node

https://medium.com/@hari4om/word-embedding-d816f643140



Link prediction example

ML on KG-COVID-19 to perform link prediction in order to identify links that correspond to actionable
knowledge:

 links between drugs and the COVID-19 disease

 links between drugs and SARS-CoV-2 protein targets

* links between drugs and host proteins that are involved in COVID-19 disease processes

Existing COVID-19 Link
COVID-19 KG-COVID-19 knowlegge Embeddings predictions
ra :
rel'afed :ta a S Embiggen Embiggen

——
~ . knowledge graph )
N—" construction generate
embeddings apply
G NCBITaxon:26970649 G0:1904659 classifiers
eese JI, Unni D, Callahan TJ, Cappelletti L, Ravanmehr V, Carbon S, Shefche , GOO

BM, Balhoff JP, Fontana T, Blau H. KG-COVID-19: a framework to produce customized
knowledge graphs for COVID-19 response. Patterns. 2020 Nov 9;2(1):100155.



Biomedical GRL
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Embeddings on graphs
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Embeddings on graphs
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Embeddings on graphs
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Embeddings on graphs
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Su C, Tong J, Zhu Y, Cui P, Wang F. Network embedding in biomedical data science. Briefings
in bioinformatics. 2020 Jan;21(1):182-97.



Embeddings on graphs
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Node embeddings (Non-attributed)

Node Features (label + neighborhood)

encode node

)

node label

e.g.,
community,
(embedding) function

Hamilton WL, Ying R, Leskovec J. Representation learning on graphs: Methods and
applications. arXiv preprint arXiv:1709.05584. 2017 Sep 17.



Node embeddings (Non-attributed)

node label

e.g.,
community,
(embedding) function

A 4

Shallow Auto-encoding Graph Graph Neural
embeddings methods Regularization Networks

Random walk-based methods

Hamilton WL, Ying R, Leskovec J. Representation learning on graphs: Methods and
applications. arXiv preprint arXiv:1709.05584. 2017 Sep 17.



Node embeddings (Non-attributed)
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eese JI, Unni D, Callahan TJ, Cappelletti L, Ravanmehr V, Carbon S, Shefche , GOO
BM, Balhoff JP, Fontana T, Blau H. KG-COVID-19: a framework to produce customized
knowledge graphs for COVID-19 response. Patterns. 2020 Nov 9;2(1):100155.



Node embeddings (Non-attributed)

B
Existing COVID-19 Link
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related data
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-- Non-attributed embeddings built for homogeneous graphs

KG-COVID-19 created from multiple sources — ontologies, databases (DrugBank), literature
(PubMed)

eese JI, Unni D, Callahan TJ, Cappelletti L, Ravanmehr V, Carbon S, Shefche , GOO
BM, Balhoff JP, Fontana T, Blau H. KG-COVID-19: a framework to produce customized
knowledge graphs for COVID-19 response. Patterns. 2020 Nov 9;2(1):100155.
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Node embeddings (Non-attributed)

Node2Vec: Random walk-based algorithms for node embeddings
« Explore neighborhood of each node with random walks
» Uses the word2vec skip-gram model for word embeddings after generating random walks

« Skip-gram word2vec: https://ronxin.github.io/wevi/

» Subgraphs from random walk equivalent to sentences in word2vec corpus

 Hyperparameters:
* Number of walks
« Walk length
« Window size (same as word2vec)
* Dimensionality
P and Q - random walk parameters



https://ronxin.github.io/wevi/

Node2Vec

Node2Vec: Random walk-based algorithms for node embeddings

« Explore neighborhood of each node with random walks

Adjacency Matrix

Random walk subgraphs from
a ° ° random walk length = 3




Node2Vec
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https://towardsdatascience.com/graph-embeddings-the-summary-cc6075aba007
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https://towardsdatascience.com/graph-embeddings-the-summary-cc6075aba007

Graph embeddings (Non-attributed)

* Encode both nodes and edges — more complex
« Fully supervised approach where attributes of nodes in graph are always known
« Example: Embed graphs of different molecules to predict their therapeutic properties

« Approach
« Equate subgraphs with sets of node embeddings
« Generate node embeddings (with node2vec) and aggregate for each subgraph
(example — one molecule)
« Aggregation may be summation, clustering, combing node and edge embeddings




Open problems in GRL

Scalability — billions of nodes/edges

* Innovation in decoders — pairwise similarity is most common

* Modeling dynamic, temporal graphs

« Beyond graph classification — generating candidate subgraphs from embeddings
* Interpretability

« Heterogeneous graphs — node embeddings get more complicated with multi-modal data or even
different node/edge types

Su C, Tong J, Zhu Y, Cui P, Wang F. Network embedding in biomedical data science. Briefings
in bioinformatics. 2020 Jan;21(1):182-97.



Embeddings on graphs
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KG embeddings (Attributed)
Why?

 Embedding of heterogeneous, large-scale knowledge graphs (KGs)

« Multiple node types (diseases, genes, chemicals)

* Multiple edge types (relation ontology — causes, interacts with, participates in)

* Real world applications — homogeneous graphs are rare

» Applications are similar — link prediction, node classification, graph completion, hypothesis generation

Goal: embed components of KG to continuous vector space and preserve the inherent structure
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Translational Models (Attributed)

 Embed knowledge graph to continuous vector space while preserving properties of the original
graph

» (Head, Relation, Tail) triples translated to the embedded space

Head ~ Subject
Relation ~ Predicate
Tail ~ Object



Translational Models (Attributed) Head ~ Subject

Relation ~ Predicate

Tail ~ Object
Semantic Representation in
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R (\6\0 ...... e, &l,@\e
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Structure — tularensis
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Source: Dr. James J. Cimino, NIH Clinical Center.



Translational Models (Attributed) Head ~ Subject

Relation ~ Predicate

Tail ~ Object
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Translational Models (Attributed)

(Head, Relation, Tail) triples translated to the embedded
space Triple
(h, r, t)

Embedding/Vector
h=(..)

v

Head ~ Subject
Relation ~ Predicate
Tail ~ Object

(...)
(...)

r
t

» Head/Tail are vectors and the relation r is an operation
in the embedding space (eg. Linear translation,
projection) — represented as vectors h, r and t

» Representations of entities and relations are obtained
by minimizing a global loss function involving all
entities and relations.




Transk (Attributed)

TransE performs linear transformation, and the scoring function is

negative distance between: A
r
Distance based embedding optimization - h
score function
fr(h,t) = h+r—t]3
(a) TransE

L(h,r,t) = max(0, — + margin)

pos neg




TransH (Attributed)

Goal: Represent relation as translating operation on hyperplane

« Hyperplane: subspace of dimension (n-1)

» Relation: relation vector r — represented as 2 vectors on the hyperplane

* Norm vector (wr)
« Translation vector (dr)

Both norm and translation vectors are relation-specific

For a golden triplet (h, r, t) — taken from the
knowledge graph - the projections of h and t on the
hyperplane are expected to be connected by the
translation vector dr with low error.

A
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t
h \
\ \
\ \ =2 Seacuserd,
\ e N
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hL /,’
B s -
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Figure 1: Simple illustration of TransE and TransH.




Transk vs TransH (Attributed)

Example:
1. (empire state building, location, NYC)
2. (ghostbusters, location, NYC)

t
A
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h t \\ - EY i ﬂ/,
7 Vi - \ /
// \\ ) /'\I_]/_/
// \., A d,r //
/ hy

> /’ el ’ >

(a) TransE (b) TransH

Figure 1: Simple illustration of TransE and TransH.

Transk

=> empire state building and ghostbusters close in
semantic space (vectors) but have no or little similarity

« Entities are represented the same way in any relation

TransH

« Embeddings of ‘Empire state building’ and
‘Ghostbusters’ will be similar for a given relation
‘location’, however they might be far away from each
other relative to other relations.

Also have TransR and TransD — further reading




KG embeddings
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Translational models (Attributed)

« Capable of handling heterogeneous, hierarchical data
* Not as intuitive as node embeddings

« Less widely used than node embeddings — node2vec, DeepWalk, LINE, PTE



Tools/Libraries

* Node2vec (in Python)

* DeepWalk (Python)

« StellarGraph library — all non-attributed algorithms for different tasks (Python)
« Embiggen (by MONARCH initiative)

« Tensorflow-TransX — translational models (Python)

» Scikit-kge

* NetworkX (Python graph library)
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