

BIOINF 2071

Machine Learning on Graphs

February 3, 2021 Sanya Bathla Taneja sbt12@pitt.edu

Machine Learning (ML)

The field of machine learning studies the design of computer programs (agents) capable of learning from past experience or adapting to changes in the environment.

- Diagnose and treat illness with structured EHR data (CDS)
- Cancer detection with images/scans
- Pathology and radiology assistants
- Predicting gene expressions
- Drug design development
- Drug repurposing

Machine Learning (ML)

The field of machine learning studies the design of computer programs (agents) capable of learning from past experience or adapting to changes in the environment.

Biomedical examples:

- Diagnose and treat illness with structured EHR data (CDS)
- Cancer detection with images/scans
- Pathology and radiology assistants
- Predicting gene expressions
- Drug design development
- Drug repurposing

Machine Learning (ML)

Training Data → **Features of model**

	Age	Gender	Blood Pressure
Patient 1			
Patient 2			

Patient characteristics such as -

- Demographics
- Vitals
- Diagnoses
- Medical history
- Lab results
- Medication orders
- Family history
- CT scans
- Radiology reports

ML on graphs

Make predictions or discover new patterns using graph-structured data as feature information.

Graph structured data:

	W	X	Υ	Z
W	0	0	0	0
X	1	0	1	0
Υ	0	0	0	0
Z	0	1	1	0

Adjacency matrix

Nodes: W, X, Y, Z (diseases, genes, molecules, enzymes ...)

Edges: relationships between the nodes (causes, interacts with, has gene, participates in ...)

Question: Can ontologies be represented as graphs?

Kg-covid-19

Homogenous vs heterogeneous graphs

Unique node "type" Unique edge "type"

[Disease] <related_to> [Disease]

Why ML on graphs?

Make predictions or discover new patterns using **graph- structured data** as feature information.

- predict the role of a person in a collaboration network
- recommend new friends to a user in a social network
- predict new therapeutic applications of existing drug molecules (represented as graphs)
- **Link prediction:** find missing links in biological interaction graphs
- Node classification: classify the role of a protein in a biological interaction graph

SARS-CoV-2 interaction graph

Why ML on graphs?

Figure 3. Illustration of applications of network embedding in biomedical data science.

ML on graphs

Apply machine learning algorithms (logistic regression, naïve Bayes, neural networks) with graph data.

What information do we want from the graph for machine learning?

- Position of node (local or global) in the graph
- Local neighborhood of a node (nodes+edges)
- Similarity between nodes (such as number of common edges)

Problems with encoding graphs:

- High dimensional representation (millions of nodes and edges)
- Statistical or kernel functions of graph data:
 - Time-consuming
 - Expensive (computation power)
 - Hand picked structural information

Graph Representation Learning (GRL)

Learn representations that encode structural information about the graph

Previous work

- treated encoding as a pre-processing step
- using hand-engineered statistics to extract structural information.

GRL

- treat encoding as machine learning task itself
- using a data-driven approach to learn embeddings that encode graph structure

Goal: Downstream tasks such as

- Link prediction
- Graph completion
- Node classification

An **embedding** is a relatively low-dimensional space into which you can translate high-dimensional vectors.

Word embeddings (word2vec)

N-dimensional vectors

Node or graph or network embeddings

- Nodes that are in the same neighborhood in the original graph should be close in the embedding space
- "Local neighborhood" of node

Link prediction example

ML on KG-COVID-19 to perform link prediction in order to identify links that correspond to actionable knowledge:

- links between drugs and the COVID-19 disease
- links between drugs and SARS-CoV-2 protein targets
- links between drugs and host proteins that are involved in COVID-19 disease processes

Biomedical GRL

Briefings in Bioinformatics, 21(1), 2020, 182-197

doi: 10.1093/bib/bby117 Advance Access Publication Date: 10 December 2018 Review article

Network embedding in biomedical data science

Chang Su, Jie Tong, Yongjun Zhu, Peng Cui and Fei Wang

Corresponding author: Fei Wang, Division of Health Informatics, Department of Healthcare Policy and Research, Weill Cornell Medicine, Cornell University, 425 East 61 Street, New York, NY 10065, USA. Tel.: +1-646-962-9405; E-mail: few2001@med.cornell.edu

To Embed or Not: Network Embedding as a Paradigm in Computational Biology

Walter Nelson^{1,2}, Marinka Zitnik³, Bo Wang^{3,4,5}, Jure Leskovec^{3,6}, Anna Goldenberg^{1,5,7*} and Roded Sharan^{8*}

¹ Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada, ² Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada, ³ Department of Computer Science, Stanford University, Stanford, CA, United States, ⁴ Peter Munk Cardiac Center, University Health Network, Toronto, ON, Canada, ⁵ Vector Institute, Toronto, ON, Canada, ⁶ Chan Zuckerberg Biohub, San Francisco, CA, United States, ⁷ Department of Computer Science, University of Toronto, Toronto, ON, Canada, ⁸ School of Computer Science, Tel Aviv University, Tel Aviv, Israel

RESEARCH ARTICLE

Neural networks for link prediction in realistic biomedical graphs: a multi-dimensional evaluation of graph embedding-based approaches

Gamal Crichton* , Yufan Guo, Sampo Pyysalo and Anna Korhonen

Neuro-symbolic representation learning on biological knowledge graphs

Mona Alshahrani¹, Mohammad Asif Khan¹, Omar Maddouri^{1,2}, Akira R. Kinjo³, Núria Queralt-Rosinach⁴ and Robert Hoehndorf^{1,*}

¹Computer, Electrical and Mathematical Sciences & Engineering Division, Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia, ²Life Sciences Division, College of Science & Engineering, Hamad Bin Khalifa University, HBKU, Doha, Qatar, ³Institute for Protein Research, Osaka University 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan and ⁴Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037 USA

*To whom correspondence should be addressed.

Associate Editor: Janet Kelso

Received on December 13, 2016; revised on March 30, 2017; editorial decision on April 18, 2017; accepted on April 18, 2017

ASSUMPTION VIOLATED!!

-- Non-attributed embeddings built for homogeneous graphs

KG-COVID-19 created from multiple sources – ontologies, databases (DrugBank), literature (PubMed)

Node2Vec: Random walk-based algorithms for node embeddings

- Explore neighborhood of each node with random walks
- Uses the word2vec skip-gram model for word embeddings after generating random walks
- Skip-gram word2vec: https://ronxin.github.io/wevi/
- Subgraphs from random walk equivalent to sentences in word2vec corpus
- Hyperparameters:
 - Number of walks
 - Walk length
 - Window size (same as word2vec)
 - Dimensionality
 - P and Q random walk parameters

Node2Vec

Node2Vec: Random walk-based algorithms for node embeddings

Explore neighborhood of each node with random walks

	W	X	Υ	Z
W	0	0	0	0
X	1	0	0	0
Υ	0	1	0	0
Z	0	1	1	0

Random walk subgraphs from random walk length = 3

Node2Vec

Random walk subgraphs = sentences

One hot encoding of sentences – input to neural network

Number of features = dimensionality of embedding vector

Graph embeddings (Non-attributed)

- Encode both nodes and edges more complex
- Fully supervised approach where attributes of nodes in graph are always known
- Example: Embed graphs of different molecules to predict their therapeutic properties
- Approach
 - Equate subgraphs with sets of node embeddings
 - Generate node embeddings (with node2vec) and aggregate for each subgraph (example – one molecule)
 - Aggregation may be summation, clustering, combing node and edge embeddings

Open problems in GRL

- Scalability billions of nodes/edges
- Innovation in decoders pairwise similarity is most common
- Modeling dynamic, temporal graphs
- Beyond graph classification generating candidate subgraphs from embeddings
- Interpretability
- Heterogeneous graphs node embeddings get more complicated with multi-modal data or even different node/edge types

KG embeddings (Attributed)

Why?

- Embedding of heterogeneous, large-scale knowledge graphs (KGs)
- Multiple node types (diseases, genes, chemicals)
- Multiple edge types (relation ontology causes, interacts with, participates in)
- Real world applications homogeneous graphs are rare
- Applications are similar link prediction, node classification, graph completion, hypothesis generation

Goal: embed components of KG to continuous vector space and preserve the inherent structure

- Embed knowledge graph to continuous vector space while preserving properties of the original graph
- (Head, Relation, Tail) triples translated to the embedded space

Head ~ Subject Relation ~ Predicate Tail ~ Object

Head ~ Subject Relation ~ Predicate Tail ~ Object

Semantic Representation in SNOMED-CT

10

Source: Dr. James J. Cimino, NIH Clinical Center.

Triples?

Head ~ Subject Relation ~ Predicate Tail ~ Object

Semantic Representation in SNOMED-CT

Source: Dr. James J. Cimino, NIH Clinical Center.

Triples?

- Pulmonary Tularemia<is-a> Tularemia
- Pulmonary Tularemia
 <is-a> Bacterial
 Pneumonia
- Pulmonary Tularemia <associated- morphology> Inflammation

(Head, Relation, Tail) triples translated to the embedded space

Head ~ Subject Relation ~ Predicate Tail ~ Object

- Head/Tail are vectors and the relation r is an operation in the embedding space (eg. Linear translation, projection) – represented as vectors h, r and t
- Representations of entities and relations are obtained by minimizing a global loss function involving all entities and relations.

```
Triple h = (...)

(h, r, t)
r = (...)
t = (...)
```

TransE (Attributed)

TransE performs linear transformation, and the scoring function is negative distance between:

Distance based embedding optimization - score function

$$f_r(h,t) = \|\mathbf{h} + \mathbf{r} - \mathbf{t}\|_2^2$$

$$L(h,r,t) = max(0, f_{pos} - f_{neg} + margin)$$

TransH (Attributed)

Goal: Represent relation as translating operation on hyperplane

- Hyperplane: subspace of dimension (n-1)
- Relation: relation vector r represented as 2 vectors on the hyperplane
 - Norm vector (wr)
 - Translation vector (dr)

Both norm and translation vectors are relation-specific

For a golden triplet (h, r, t) – taken from the knowledge graph - the *projections* of h and t on the hyperplane are expected to be connected by the translation vector dr with low error.

Figure 1: Simple illustration of TransE and TransH.

TransE vs TransH (Attributed)

Example:

- 1. (empire state building, location, NYC)
- 2. (ghostbusters, location, NYC)

Figure 1: Simple illustration of TransE and TransH.

TransE

- => empire state building and ghostbusters close in semantic space (vectors) *but* have no or little similarity
- Entities are represented the same way in any relation

TransH

 Embeddings of 'Empire state building' and 'Ghostbusters' will be similar for a given relation 'location', however they might be far away from each other relative to other relations.

Also have TransR and TransD – further reading

KG embeddings

- Capable of handling heterogeneous, hierarchical data
- Not as intuitive as node embeddings
- Less widely used than node embeddings node2vec, DeepWalk, LINE, PTE

Tools/Libraries

- Node2vec (in Python)
- DeepWalk (Python)
- StellarGraph library all non-attributed algorithms for different tasks (Python)
- Embiggen (by MONARCH initiative)
- Tensorflow-TransX translational models (Python)
- Scikit-kge
- NetworkX (Python graph library)

Other resources/links/bibliography

Su C, Tong J, Zhu Y, Cui P, Wang F. Network embedding in biomedical data science. Briefings in bioinformatics. 2020 Jan;21(1):182-97.

Crichton G, Guo Y, Pyysalo S, Korhonen A. Neural networks for link prediction in realistic biomedical graphs: a multi-dimensional evaluation of graph embedding-based approaches. BMC bioinformatics. 2018 Dec 1;19(1):176.

Nelson W, Zitnik M, Wang B, Leskovec J, Goldenberg A, Sharan R. To embed or not: network embedding as a paradigm in computational biology. Frontiers in genetics. 2019;10:381.

Tripodi IJ, Callahan TJ, Westfall JT, Meitzer NS, Dowell RD, Hunter LE. Applying knowledge-driven mechanistic inference to toxicogenomics. Toxicology in Vitro. 2020 May 6:104877.

Hamilton WL, Ying R, Leskovec J. Representation learning on graphs: Methods and applications. arXiv preprint arXiv:1709.05584. 2017 Sep 17.

Chami I, Abu-El-Haija S, Perozzi B, Ré C, Murphy K. Machine Learning on Graphs: A Model and Comprehensive Taxonomy. arXiv preprint arXiv:2005.03675. 2020 May 7. https://arxiv.org/pdf/2005.03675.pdf

Nicholson DN, Greene CS. Constructing knowledge graphs and their biomedical applications. Computational and structural biotechnology journal. 2020;18:1414.

Wang Z, Zhang J, Feng J, Chen Z. Knowledge graph embedding by translating on hyperplanes. InAaai 2014 Jul 27 (Vol. 14, No. 2014, pp. 1112-1119).

Bordes A, Usunier N, Garcia-Duran A, Weston J, Yakhnenko O. Translating embeddings for modeling multi-relational data. InNeural Information Processing Systems (NIPS) 2013 Dec 5 (pp. 1-9).

- https://towardsdatascience.com/graph-embeddings-the-summary-cc6075aba007
- https://github.com/aditya-grover/node2vec
- https://stellargraph.readthedocs.io/en/stable/index.html
- https://cs.mcgill.ca/~wlh/comp766/files/graphs-against-covid.pdf