Explaining natural productdrug interactions with biomedical knowledge graphs

> Sanya Bathla Taneja PhD student, Intelligent Systems Program <u>sbt12@pitt.edu</u> April 16, 2021

Natural Products Promoted for Complementary Health

ACAI BERRY HEALTH BENEFITS

Acai berry

Natural Products Promoted for Complementary Health

Benefits of Kratom Reduce anxiety Relieving pain Boost immune system Boost of energy Treat diabetes Better focus & concentration Addiction recovery

Complementary Health Approaches – Pain Relief

Kratom – promoted for analgesic/pain relief

Cannabis/cannabidiol (CBD)– promoted for all kinds of health benefits

Natural Product (NP) Safety Concerns

St. John's wort

+ cyclosporin ------ Transplant or graft rejection

- NPs are not nearly as regulated as drugs by the FDA
- Large number of NPs now available
 - 76,000 in dietary supplements database
- Increasing consumer market for NPs
 - Up to 18% adults in US

Source: https://www.nccih.nih.gov/health/st-johns-wort-and-depression-in-depth

NP Safety Concerns

Adverse events due to intake of NP

- Concomitant intake of drugs and NPs by older adults
 - Up to 80% adults in US
- Generally, natural products not reported to physicians or in EHR
- Effects range from mild, severe to deadly depending on the interaction
- Occurs when substance/constituent interacts with a drug or inhibits it
 - Makes drug ineffective and/or toxic to body

NP Safety Concerns

FDA Adverse Event Reporting System (FAERS)

- Platform for consumers, physicians, legal agencies to report drug interactions and adverse effects
- Able to find natural products in reports

Natural Product	Reported Adverse Events
Kratom	Vomiting, pulmonary congestion, death
Horse Chestnut	Somnolence, gastroesophageal reflux disease, coma
Cannabis	Cardiac arrest, respiratory issues
Green Tea	Rash, burning skin sensation, itchy skin, erythema
Cinnamon	Increased blood glucose, abdominal pain
Saw Palmetto	Death

New Examples – natural products with > 20 reports in FAERS since 2004

NP Safety Concerns Related to Interaction with Drugs

NP Safety Concerns Related to Interaction with Drugs

Pharmacokinetic Drug Interactions

Pharmacokinetic NP-Drug Interactions

Pharmacokinetic NP-Drug Interactions

Pharmacokinetic NP-Drug Interactions

Discovering Pharmacokinetic NP-Drug Interactions

Understanding the mechanism is key to preventing major adverse events due to pharmacokinetic interactions.

Discovering Pharmacokinetic NP-Drug Interactions

Discovering Pharmacokinetic NP-Drug Interactions

Pharmacokinetic NP-Drug Interactions Signal Detection

New Examples – natural products with > 20 reports in FAERS since 2004

Natural Product	Reported Adverse Event	
Kratom	Vomiting, pulmonary congestion, death	
Horse Chestnut	Somnolence, gastroesophageal reflux disease, coma	
Cannabis	Cardiac arrest, respiratory issues	
Green Tea	Rash, burning skin sensation, itchy skin, erythema	
Cinnamon	Increased blood glucose, abdominal pain	
Saw Palmetto	Death	

Others include adverse effects from grapefruit juice and St. John's wort.

Objectives of My Research

Develop an automated hypothesis generation tool that can explain

- mechanistic information about pharmacokinetic interactions
- pathways that lead to adverse events.

Overall goal:

Using signals generated from FAERS and poison center reports, identify natural products with risks, generate hypotheses to explain the pharmacokinetic natural product-drug interaction and mechanism, and validate with in vitro and clinical studies.

Biomedical Knowledge Graphs

- Graph structure with nodes and edges
 - Nodes -> entities
 - Edges -> relationships
- Heterogeneous data sources
 - Ontologies (Gene Ontology, Pathway Ontology, MONDO Disease Ontology)
 - Drug databases (Drug Bank, Drug Central)
 - Literature
- Can be existing curated knowledge
 or new information

Biomedical Knowledge Graphs: Ontology

- Hierarchical representation of entities in a domain with formal relations defined between the entities.
- Examples:
 - Gene ontology
 - Disease ontology
 - Chemical Entities of Biological Interest (ChEBI)
 ontology

Methods

Goal: Use search algorithms and heuristics to find mechanistic pathways and hypotheses that explain pharmacokinetic natural product-drug interactions and adverse events.

Methods

Diabetes mellitus	subClassOf	Glucose intolerance
Glucose intolerance	towards	Glucose import
Glucose import	MOLECULARLY_ INTERACTS_WITH	Progesterone
Progesterone	INTERACTS_WITH	MPO
MPO	CAUSES_OR_ CONTRIBUTES_TO_ CONDITION	Alzheimer disease

Human Phenotype Ontology	subClassOf	Human Phenotype Ontology
Diabetes mellitus	subClassOf	Glucose intolerance
Glucose intolerance	towards	Glucose import
Glucose import	MOLECULARLY_ INTERACTS_WITH	Progesterone
Progesterone	INTERACTS_WITH	MPO
MPO	CAUSES_OR_ CONTRIBUTES_TO_ CONDITION	Alzheimer disease

Human Phenotype Ontology	subClassOf	Human Phenotype Ontology
Human Phenotype Ontology	towards	Gene Ontology
Diabetes mellitus	subClassOf	Glucose intolerance
Glucose intolerance	towards	Glucose import
Glucose import	MOLECULARLY_ INTERACTS_WITH	Progesterone
Progesterone	INTERACTS_WITH	MPO
MPO	CAUSES_OR_ CONTRIBUTES_TO_ CONDITION	Alzheimer disease

Human Phenotype Ontology	towards	Gene Ontology	
Gene Ontology	molecularly_interacts_with	ChEBI	
ChEBI	interacts_with	Sequence Ontology	
Sequence Ontology	causes_or_contributes_to_condition _	Human Phenotype Ontology	
Diabetes mellitus	subClassOf	Glucose intolerance	
Glucose intolerance	towards	Glucose import	
Glucose import	MOLECULARLY_ INTERACTS_WITH	Progesterone	
Progesterone	INTERACTS_WITH	MPO	
MPO	CAUSES_OR_ CONTRIBUTES_TO_ CONDITION	Alzheimer disease	

Semantic Integration of Data: PheKnowLator

Semantic Integration of Data: PheKnowLator

Semantic Integration of Data: PheKnowLator

Data Sources

Cell Ontology

Cell Line Ontology

Chemical Entities of Biological Interest (ChEBI) Ontology

Gene Ontology (GO)

Human Phenotype Ontology (HPO)

Mondo Disease Ontology

Pathway Ontology

Protein Ontology

Relations Ontology (RO)

Sequence Ontology

Uber-Anatomy Ontology

Drug Bank

Drug Central

Ontology of Adverse Events (OAE)

Drug-Drug Interaction Evidence Ontology (DIDEO)

Current knowledge graph version

78,317,102 triples

Methods

Standardization of Terminology

Why standardization?

- Standard identifiers
- Interoperability
- Access to domain relevant information (genus, species, constituents, chemical characteristics)
- Comprehensive coverage of natural products
- Non-ambiguous names

Potential standardization data sources:

- FDA Global Substance Registration System (G-SRS)
- Dietary Supplement Label Database (DSLD)
- Licensed Natural Health Products Database (Canada)
- Unified Medical Language System (UMLS)
- Others (NDF-RT, RxNorm, Natural Medicines Database, RxNorm, MESH, SNOMED-CT)

Standardization of Terminology

Global Substance Registration System (G-SRS)

	Ver. 2.7.1		
	Overview	>	GREEN TEA LEAF
	Names 18	>	
)	Classification 4	>	Overview
dard	Identificant 10		Substance Class Structurally Diverse
	Identifiers IU	>	Record UNII W2ZU1RY8B0
	Metabolites 28	>	Record Protection Status Public record
into	Active Moiety 1	>	Record Status Validated (UNII)
	Constituents 8	>	Source Materials Class ORGANISM
	Variant Concepts 2	>	Source Materials Type PLANT
	Audit Info	>	Source Materials Parent

>

References 42

CDC M

Search

Goals of standardization with G-SRS:

- Create vocabulary of natural products to map • "drugs" (user input strings) in FAERS to stand terminology
- Import natural products (and characteristics) ٠ knowledge graph

ance Class Structural	ly Diverse		
d UNII W2ZU1RY8B	0		
d Protection Status Pu	Iblic record		
d Status Validated (U	NII)		
e Materials Class ORG	ANISM		
e Materials Type PLANT			
e Materials Parent			

CAMELLIA SINENSIS WHOLE

Standardization of Terminology: G-SRS

Natural products with > 20 reports in FAERS since 2004

Natural Product	Reported Adverse Event
Kratom	Vomiting, pulmonary congestion, death
Horse Chestnut	Somnolence, gastroesophageal reflux disease, coma
Cannabis	Cardiac arrest, respiratory issues
Green Tea	Rash, burning skin sensation, itchy skin, erythema
Cinnamon	Increased blood glucose, abdominal pain
Saw Palmetto	Death

Methods

Knowledge Representation

ChEBI: Chemical Entities of Biological Interest

- Dictionary of molecular entities
- Identifiers, names, synonyms, chemical characteristics
- "Relations" between entities has_functional_parent, has_role, is_enantiomer_of
- Large number of drugs and chemicals
- Only some natural product constituents (mitragynine kratom, catechin(s)– green tea)

Knowledge Representation

Semantic Representation

Source: Dr. James J. Cimino, NIH Clinical Center.

- Knowledge graph made of triples (subject-predicate-object)
- Goal: Extend the ChEBI ontology with natural product information from G-SRS and NaPDI Center
- Steps:

10

- Build semantic representations
- Generate ontology/web ontology language files
- Merge into knowledge graph

Knowledge Representation

Methods

Machine Reading

Challenge: Incomplete information in existing data sources

- No inhibition/interactions in other data sources (G-SRS, LNHPD, DSLD)
- Drug databases (Drug Bank, Drug Central drug drug interaction gold standard) do not contain the NP constituents
- Research on natural products since 1900s
 - suggested hypothesis
 - animal models
 - clinical studies
 - observational reports

Thus, we use PubMed and SCOPUS indexed articles with mechanistic information about natural products and their constituents.

- Other sources:
 - Natural Medicines database (manually compiled from literature and systematic reviews)
 - CHEMBL (literature-based)

Machine Reading

- PubMed and SCOPUS indexed articles with mechanistic information about natural products and their constituents
- INDRA: Integrated Network and Dynamical Reasoning Assembler
- REACH: Reading and Assembling Contextual and Holistic Mechanisms from Text
- Hypothesis: enhancing the KG to include literature related to the natural products will improve our ability to find mechanistic explanations for pharmacokinetic NPDIs and adverse events.
- Extract INDRA statements as subject-predicate-object triples and merge into knowledge graph
 - Subject and object grounded in OBO ontologies
 - Belief scores (probabilistic)
 - Deduplication
 - Evidence-based

Machine Reading

Kratom results

Subject	Predicate	Object	Sentence	Belief
Mitragynine	IncreaseAmount	CYP1A2	Mitragynine was found to induce mRNA and protein expression of CYP1A2.	0.65
Mitragynine	Inhibition	Quinidine	mitragynine exhibited low permeability across the cell monolayer but inhibited digoxin transport, similar to quinidine.	0.65
Mitragynine	Inhibition	G_protein	In addition, mitragynine was also found to inhibit the hERG1a and GIRK (G protein-coupled inward rectifier potassium) channels in other heterologous expression systems50.	0.65
Mitragynine	Inhibition	STE6 (mapped from P- glycoprotein)	Mitragynine and 7-hydroxymitragynine inhibited P- glycoprotein with EC50 values	0.65
Mitragynine	Inhibition	Kr (incorrect mapping)	Mitragynine and its analogues at low concentrations (IC50 ranging from 0.91 to 2.47 μ M) potently inhibited IKr in hiPSC-CMs.	0.95

Goal

Develop an automated hypothesis generation tool using biomedical knowledge graph that can explain

- mechanistic information about pharmacokinetic interactions
- pathways that lead to adverse events.

- NP signals generated from FAERS
- Identify nodes of interest in graph (natural products, enzymes, adverse events)
- Search algorithms
 - Simple paths between 2 nodes
 - Shortest paths
 - Bidirectional search
 - Embedded search (similarity-based)

Mitragynine (Kratom)

Seizures

	Mitragynine	molecularly interacts with	long-chain fatty acid metal	bolic process
PATH 1A:	long-chain fatty acid metabolic process		molecularly interacts with	valproic acid
	valproic acid	is_conjugate_acid_of	valproate	

PATH 1B:	Valproate	is_conjugate_base_of	valproic acid
	valproic acid	interacts with	TSC2
	TSC2	causes or contributes to condition	Seizures

Mitragynine (Kratom)

Pulmonary edema

PATH 2A:

Mitragynine response to drug

molecularly interacts with re *molecularly interacts with* di

response to drug diphenhydramine

PATH 2B:

diphenhydramine molecularly interacts with
positive regulation of biological process
aflatoxin B1 interacts withpositive regulation of biological process
molecularly interacts with
GHRHpositive regulation of biological process
molecularly interacts with
GHRHGHRH causes or contributes to conditionPulmonary edema

Evaluation

- Gold standard: clinical and in-vitro studies
- Time splicing
- Current NPs for evaluation: kratom, goldenseal, green tea, licorice, cinnamon

Future work and work in progress

- Include information for over 600 natural products of interest
- Signal generation from FAERS database and Pittsburgh poison center reports
- Embeddings for graph completion
- Improve machine reading for better entity recognition, full text extraction pipeline, heuristics to remove noise
- Semantic representation automated extraction from data sources
- Knowledge graph searches heuristics and closure (transitive)
- Translation to lab/clinical once a strong NPDI is identified with potential mechanism

Thank you!

Dr. Richard Boyce (Primary Advisor), Department of Biomedical Informatics Dr. Sandra Kane-Gill, School of Pharmacy

Funding: <u>NIH Grant U54 AT008909</u> PI: Dr. Mary Paine (Washington State University)

Discussion